آرشیو وبلاگ
دانلود طرح های رنگ آمیزی فانتزی کودکان

تحقیق پیرامون باغ های ایرانی و سایر کشورها

کاربردهای فوریه در الکترونیک

همانطور که می دانید مهمترین ویژگی در ادای هر حرف فرکانس های تشکیل دهنده آن حرف می باشد. به عنوان مثال سه فرکانس اصلی حرف " آ " فرکانس های 750 ، 1150 و 2400 هرتر بوده و همین فرکانس های برای حرف " او " 400 ، 1150 و 2300 هرتز می باشند. بنابراین آنچه باعث تفکیک دو حرف " آ " و " او " از همدیگر می شود، فرکانس های تشکیل دهنده آن می باشد. از اینرو در کاربردهای پردازش گفتار پیدا کردن فرکانس های تشکیل دهنده یک سیگنال گفتاری از اهیت بسیار زیادی برخوردار می باشد. همانطور که می دانید سیگنال گفتار به شکل یک سیگنال زمانی در اختیار ما قرار دارد و تشخیص فرکانس های تشکیل دهنده یک سیگنال در حوزه زمانی غیرممکن است.

به عنوان مثال شکل زیر را که نشان دهنده سیگنال گفتار زمانی حرف " آ " می باشد در نظر بگیرید. بخشی از این سیگنال به شکل زوم شده در شکل نشان داده شده است.

 

 

 

 

از این شکل پیداست که پیدا کردن فرکانس های تشکیل دهنده این سیگنال از روی سیگنال زمانی غیرممکن می باشد. از اینرو نیاز به ابزار دیگری داریم که بتواند این کار را برای ما انجام دهد. آقای فوریه نشان دادند که هر تابع متناوب را می توان به شکل ترکیبی از موج های سینوسی ( یا کوسینوسی ( نشان داد که این مطلب را با نام سری های فوریه می شناسیم. از مقاله مربوطه به موج سینوسی به یاد دارید که هر موج سینوسی می تواند به شکل یک صوت در خروجی بلندگو به شنیده شود. در این بین فرکانس موج سینوسی نیز مستقیما زیر و بم بودن صوت تولید شده را تعیین می کند.

 با توجه به این دو حقیقت می توان دریافت که با استفاده از آنالیز فوریه یک سیگنال می توان موج های سینوسی تشکیل دهنده آن را استخراج کرد و از روی موج های سینوسی نیز می توان فرکانس های تشکیل دهنده سیگنال گفتار را به دست آورد. با این حال نمی توان مستقیما از سری های فوریه برای این منظور بهره جست. چراکه سری های فوریه بر روی توابع متناوب تعریف شده اند و این در حالی است که ما در اینجا با سیگنال سروکار داریم که هیچ تابعی را نمی توان برای یک سیگنال گفتار تخمین زد. برای رفع این مشکل ابزاری با نام تبدیل فوریه معرفی شده است که بر روی داده های عددی ( سیگنال ) اعمال می شود. تبدیل فوریه گسسته مختلط سیگنال s به طول N را می توان با استفاده از رابطه زیر تعریف کرد:

 

 

 

از قانون اویلر نیز به یاد دارید که :


بنابراین رابطه فوق را می توان به شکل زیر بازنویسی کرد : 

 

 

که در این رابطه N اندازه سیگنال ورودی ، s(n) مقدار سیگنال ورودی در نقطه n ، m اندیس فرکانس، S(m)اندازه فرکانس در اندیس m ام می باشند. همانطور که می دانید S(m) یک عدد مختلط است و بنابراین برای به دست اندازه فرکانس در اندیس mام باید بزرگی این عدد مختلط را محاسبه کرد. بزرگی یک عدد مختلط از رابطه زیر به دست می آید :

 

 

پس از آنکه تبدیل فوریه بر روی سیگنال ورودی اعمال شد، بردار S در فرکانس های تشکیل دهنده سیگنال s دارای مقداری بسیار بزرگتر از 0 و در سایر نقاط بزرگی نزدیک به صفر خواهد داشت. بنابراین می توان برای پیدا کردن فرکانس های تشکیل دهنده یک سیگنال گفتار تبدیل فوریه را بر روی سیگنال ورودی اعالم کرده و پس از محاسبه بزرگی خروجی، فرکانس های تشکیل دهنده آن سیگنال را از روی بزرگی هر فرکانس استخراج کرد. در مقاله بعدی سعی می کنیم این مساله را به همراه سایر پارامترها و خصوصیات سیگنال گفتار مورد بررسی قرار دهیم. برای محاسبه تبدیل فوریه یک سیگنال در محیط MATLAB از تابع fft می توانید استفاده کنید:

 

>> t=0:1000;

>> a = sin(2*pi * 200/1000 * t); 

>> b = sin(2*pi * 10/1000 * t); 

>> c = sin(2*pi * 500/1000 * t); 

>> d = a + b + c; 

>> ffd = fft(d); 

>> mffd = abs(ffd);

 >> plot(mffd(1:500))

 

در این تکه کد ابتدا سه موج سینوسی با فرکانس های 20، 10 و 500 هرتز تولید کرده و پس از ترکیب آن ها سیگنال جدیدی با نام d به وجود آوردیم. سپس با استفاده از تابع fft تبدیل فوریه سیگنال d را محاسبه کرده و با استفاده از تابع abs بزرگی سیگنال تبدیل شده را به دست آوردیم. در نهایت نیز به رسم سیگنال تبدیل شده پرداختیم.

در نموداری که بس از فراخوانی دستور plot برای شما نشان داده می شود، در نقاط 10 ، 200 و 500 نمودار دارای مقدار بزرگ بوده و در سایر نقاط دارای مقدار صفر است. این نشان می دهد که سیگنال d شامل فرکانس های 10 ، 200 و 500 هرتز می باشد.

ایده ی نمایش یک تابع برحسب مجموعه ی کاملی از توابع اولین بار توسط ژوزف فوریه، ریاضیدان و فیزیکدان بین سال های ۱۸۰۶-۱۸۰۲ طی رساله ای در آکادمی علوم راجع به انتشار حرارت، برای نمایش توابع بکار گرفته شد. در واقع برای آنکه یک تابع(f(x به شیوه ای ساده و فشرده نمایش داده شود فوریه اساسا ثابت کرد که می توان از محور هایی استفاده کرد که بکمک مجموعه ایی نامتناهی از توابع سینوس وار ساخته می شوند. بعبارت دیگر فوریه نشان داد که یک تابع (f(x را می توان بوسیله ی حاصل جمع بی نهایت تابع سینوسی و کسینوسی به شکل (sin(ax و(cos(ax نمایش داد. پایه های فوریه بصورت ابزار هایی اساسی، با کاربردهای فوق العاده متواتر در علوم، در آمده اند، زیرا برای نمایش انواع متعددی از توابع و در نتیجه کمین های فیزیکی فراوان بکار می روند. با گذشت زمان ضعف پایه های فوریه نمایان شد مثلا دانشمندان پی بردند پایه های فوریه و نمایش توابع سینوس وار در مورد سیگنال های پیچیده نظری تصاویر، نه تنها ایده آل نیستند بلکه از شرایط مطلوب دورند، بعنوان مثال به شکل کارآمدی قادر به نمایش ساختارهای گذرا نظیر مرزهای موجود در تصاویر نیستند. همچین آنها متوجه شدند تبدیل فوریه فقط برای توابع پایه مورد استفاده قرار می گیرد و برای توابع غیر پایه کار آمد نیست.(البته در سال ۱۹۴۶ با استفاده از توابع پنجره ای، که منجر به تبدیل فوریه ی پنجره ای شداین مشکل حل شد.(
در سال ۱۹۰۹ هار اولین کسی بود که به موجک ها اشاره کرد. در سال های ۱۹۳۰ ریاضیدانان به قصد تحلیل ساختارهای تکین موضوعی به فکر اصلاح پایه های فوریه افتادند. و بعد از آن در سال ۱۹۷۰ یک ژئوفیزیکدان فرانسوی به نام ژان مورله متوجه شد که پایه های فوریه بهترین ابزار ممکن در اکتشافات زیر زمین نیستند، این موضوع در آزمایشگاهی متعلق به الف آکیلن منجر به یکی از اکتشافات تبدیل به موجک ها گردید.

در سال ۱۹۸۰ ایومیر ریاضیدان فرانسوی، نخستین پایه های موجکی متعامد را کشف کرد(تعامد نوعی از ویژگی ها را بیان می کند که موجب تسهیلات فراوانی در استدلال و محاسبه می شود، پایه های فوریه نیز متعامدند.) در همین سال ها مورله مفهوم موجک و تبدیل موجک را بعنوان یک ابزار برای آنالیز سیگنال زمین لرزه وارد کرد و گراسمن فیزیکدان نظری فرانسه نیز فرمول وارونی را برای تبدیل موجک بدست آورد.
در سال ۱۹۷۶ میرو و مالت از پایه های موجک متعامد توانسنتد آنالیز چند تفکیکی را بسازند و مالت تجزیه موجک ها و الگوریتم های بازسازی را با بکار بردن آنالیز چند تفکیکی بوجود آورد. در سال ۱۹۹۰ مورنزی همراه با آنتوان موجک ها را به دو بعد و سپس به فضاهایی با ابعد دیگر گسترش دادند و بدین ترتیب بود که آنالیز موجکی پایه گذاری گردید.

آشنایی

آنالیز موجک (Wavelet Analysis) یکی از دستاوردهای نسبتا جدید و هیجان انگیز ریاضیات محض که مبتنی بر چندین دهه پژوهش در آنالیز همساز است، امروزه کاربردهای مهمی در بسیاری از رشته های علوم و مهندسی یافته و امکانات جدیدی برای درک جنبه های ریاضی آن و نیز افزایش کاربردهایش فراهم شده است.

در آنالیز موجک هم مانند آنالیز فوریه با بسط تابع ها سروکار داریم ولی این بسط برحسب «موجک ها» انجام می شود.

موجک تابع مشخص مفروضی با میانگین صفر است و بسط برحسب انتقالها و اتساعهای این تابع انجام می گیرد، بر خلاف چند جمله ای های مثلثاتی، موجک ها در فضا بصورت موضعی بررسی می شوند و به این ترتیب ارتباط نزدیکتری بین بعضی توابع و ضرایب آن ها امکان پذیر می شود و پایداری عددی بیشتری در باز سازی و محاسبات فراهم می گردد. هر کاربردی را که مبتنی بر تبدیل سریع فوریه است می توان با استفاده از موجک ها فومول بندی کرد و اطلاعات فضایی (یا زمانی) موضعی بیشتری بدست آورد. بطور کلی، این موضوع بر پردازش سیگنال و تصویر و الگوریتم های عددی سریع برای محاسبه ی عملگرهای انتگرالی اثر می گذارد.

آنالیز موجک حاصل ۵۰ سال کار ریاضی (نظریه ی لیتلوود – پیلی و کالدرون – زیگموند) است که طی آن، با توجه به مشکلاتی که در پاسخ دادن به ساده ترین پرسش های مربوط به تبدیل فوریه وجود داشت، جانشینهای انعطاف پذیر ساده تری از طریق آنالیز همساز ارائه شدند. مستقل از این نظریه که درون ریاضیات محض جای دارد، صورتهای مختلفی از این رهیافت چند مقیاسی (multi Scale) را در طی دهه ی گذشته در پردازش تصویر، آکوستیک، کدگذاری(به شکل فیلترهای آیینه ای متعامد و الگوریتمهای هرمی)، و استخراج نفت دیده ایم.


کاربردها

آنالیز موجک همراه با تبدیل سریع فوریه در تحلیل سیگنالهای گذرایی که سریعا تغییر می کنند، صدا و سیگنالهای صوتی، جریان های الکتریکی در مغز، صداهای زیر آبی ضربه ای و داده های طیف نمایی NMR، و در کنترل نیروگاههای برق از طریق صفحه ی نمایش کامپیوتر بکار رفته است. و نیز بعنوان ابزاری علمی، برای روشن ساختن ساختارهای پیچیده ای که در تلاطم ظاهر می شوند، جریان های جوی، و در بررسی ساختارهای ستاره ای از آن استفاده شده است. این آنالیز به عنوان یک ابزار عددی می تواند مانند تبدیل سریع فوریه تا حد زیادی از پیچیدگی محاسبات بزرگ مقیاس بکاهد، بدین ترتیب که با تغییر هموار ضریب، ماتریس های متراکم را به شکل تنکی که به سرعت قابل محاسبه باشد در آورد. راحتی و سادگی این آنالیز باعث ساختن تراشه هایی شده است که قادر به کدگذاری به نحوی بسیار کارا، و فشرده سازی سیگنالها و تصاویرند.

برای دانلود فایل ورد این مطلب اینجا کلیک کنید



تاريخ : ۱۳٩٤/۱٠/٢ | ٥:٥٤ ‎ق.ظ | نویسنده : فرج اله فیروزی تبار | نظرات ()